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Overview

* Introduction and Background

* Laboratory Test Results from Full-Scale Specimens

Shear Strengthening
Flexural Strengthening

* Field Implementation on Mosier Bridge over 184
* AASHTO Design and Construction Guide
 ASTM Material Specification

* Conclusions
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Introduction

Durmg the 1950 and 60’s:

Post-war construction boom
* Reinforced concrete widely used

* Newly standardized deformed | 90" 2% borsa
reinforcing steel bars produced poor=3 - ZWbersl:
details e T T T \"‘*

* Design codes were not conservative AL l \ SN ’ | l H\

NOW: ] J72G" Hoonch I
: : : /150" )

* Visual distress, changes in use, | -
extend life

* Using modern design codes to T
assess JT -

Results: woe MY
4

* Replace, limit loads, retrofit

=
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Strengthening Approaches

Flexural girder strengthening with &
CFRP laminate

* Post-tensioning
* Wrapping/confining
* Carbon fiber reinforced polymer (CFRP)
laminate

* Near-surface mounted (NSM)
* Carbon fiber reinforced polymer rod/strip
* Glass fiber reinforced polymer (GFRP) rod
* Stainless steel bars

FRP rods and laminates fail due to bond and
anchorage and materials are nonductile

Concerns with corrosion at surface for most
metals

Oregon State
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Background: NSM Strengthening Materials

Carbon Fiber Reinforced Polymer (CFRP)
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CFRP Bond Failure - Limits material strength

Oregon State



Near-Surface Mounting
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CFRP-NSM

Outer shell peeling
Inner core cracked diagonally

Wide CFRP-NSM

Tightly spaced CFRP-NSM

LS



Alternatives?

Want environmentally insensitive
material with high strength, well
defined properties, and efficient

mechanical anchorages to engage core

-> Titanium
Ductile FRP




Titanium?

No one uses titanium in
structural engineering!

It is too expensive...

It’s only for aircraft or
medical devices....

Oregon State

UNIVER SITY




Titanium Alloy Material Properties (Ti-6Al-4V)
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Titanium Alloy Material Properties (Ti-6Al-4V)

* Aircraft fastener quality (6% Aluminum 4% Vanadium)

* Well-defined, high strength, and ductile (limited hardening-
>protects bond, structural fuse)

« High fatigue resistance (CAFL~ 75 ksi), low notch sensitivity
* Impervious to chlorides due to stable oxide layer

* Coeff. of thermal expansion (8.6p¢/°C) (8-12 Con. and 12 St.)
* Conventional fabrication (shear, cut, and bend)

* Relatively lightweight of 281 Ib/ft> (steel 1.7x)

* Bends facilitate anchorage
Oregon State




Experimental Work

* Full-scale tests with typical
proportions and materials
from legacy designs

e Shear specimens: 10
(3 control)

1/4 in. diameter TiABs

Hydraulic
Actuator

* Flexure specimens: 10 \\
(3 control) O 241J
5/8 in. diameter TiABs W@f‘,_ B MM i
- L=7315mm (2881in.) T >
° Fatigue and freeze_thaw 4 ft hEIght, 24 ft Iong, 20,000 b

exposure: 3 Oregon State
(2 shear, 1 flexure)



Epoxy Properties

BASF MasterEmaco ADH 1420: Bond = 2000 psi
Unitex Pro-Poxy 400: Bond = 2800 psi
Hilti HIT-RE 500 V3: Bond = 1700 psi




Shear Strengthening - Cross sections (High V and M-)

14 in [356 mm)]

42 in [1067 mm]

24
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™~ #11 Grade 60 [#36 Grade 420] [
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#11 Grade 60 [#36 Grade 420]

/—1 in [25 mm] clear cover

36 in [914 mm]

\— 1.5 in [38 mm] clear cover

1/4 in. [6.4 mm)] Titanium
@ 12 in. [305 mm] o.c.

#4 Grade 40 [#13 Grade 280]
@ 18 in. [457 mm] o.c.
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Shear Strengthening: Installation

Oregon State



Shear : Fatigue with Freeze-Thaw

e Designed to simulate 50 years
of damage based field testing

* 2,400,000 cycles

* Internal stirrup stress range of
13 ksi

SReqv = SRi e, et e
NtOt .;'»" i i B
V (1)55) in. emgegmen: in. e e en
Freeze-Thaw A AL Al
* 120 cycles SONAN]
* Represents 25-100 years of damage in N N i
. . e S |

Oregon, depending on location R .
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Shear Results Epoxy E1 Ti@ 12 in.

Midspan Deflection (mm)
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Flexure T Beam Details 1.  T.45.Ld3: Baseline T Beam
2. T.45.Ld3.NSM-Ti: with 10 in stirrups

T.45.Ld3.NSM-Ti.2: Titanium with 6 in stirrups

|~ 1.5in Clear cover 3.

WE #4 Grade 60
‘7_ Spaced @ 12in o sz P[2

.'\ i
Gin | * H | 2f | 12 ft
.
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&, L
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/ Spacing 10 in
15118 in. 4 2
square #5-11 Grade 60 ) il : -
graoves for Ti /_ 3 |
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sk | fo & ] Titanium Retrofit ‘r
R 13.75 in e
48750n \$_& @&, . _
b O Strain gage @ Tiltsensor % Diagonal Disp. sensor v Disp. Sensor
. 1.9 in Clear cover
356 mm
® Continucus Bars » Cutoff Bars
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Flexure IT Beam Details 1.

42 in

IT.45.Ld2: Baseline IT Beam

2. IT.45.Ld3.NSM-Ti: Titanium with 10 in. stirrups
3. IT.45.Ld3.NSM-Ti.2: Titanium with 6 in. stirrups
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Specimen Construction

45°
preformed
5> crack
i : : .n >
i!i : 1.5 in.
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_ , Oregon State
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NSM Strengthening Methodology

ACl 440.2R
* Groove Spacing

* Groove dimensions

(5)No.11 o . /4) Ti No. 5 (hook end)
0. \\\ . - i

o
—

: 1)
] — |
2 h‘t?

134" Square Grooves

Epoxy Manufacturer Data
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NSM Strengthening Methodology

Hook Fabrication

e 2 Tibars on each side
e 12.5 ft length
* 6in. hooks

e 2in. bend diameter
 Ti: Heat to 900 °F or 1250 °F

LS
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T.45.Ld3.NSM-Ti2 Failure (with TiABs)

Oregon State
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T Beam Experimental Results

Displacement (mm)
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Durability High Cycle Fatigue and Freeze-Thaw Combined

* Largest combined structural-environmental chamber in US
* Thermocouples at 0.5, 1.5, and 3 in. ensure temperature targets

* 1.6 million cycles @ steel stress range >50 years of life.

Temperature (

Oregon State

-10
6/1/2016 4:34:00 PM 6/2/2016 12:34:00 AM
Time



T Beam Experimental Results - Durability (s=10 in.)

Midspan Displacement (mm)
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Mosier Overcrossing of Interstate 84

e Builtin 1952
e Serves a nearby quarry

LI T —

Oregon State
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on crack face







Mosier As-Built Details
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Test Plan

Three specimens:
1. Mosier 1: As-Built

2. Mosier 2: Strengthen after failing reinforcing steel anchorage
(designer’s assumption)

3. Mosier 3: Strengthen with reinforcing steel anchorage intact

Searched mill certifications to locate bars that best matched
strength curves of original design. Used smaller sized Grade
420 (60) rebar to match development length of intermediate
grade steel (280 MPa (40 ksi))

Oregon State



Mosier Beam Details
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Experimental Results: Mosier 1

Oregon State
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Experimental Results: Mosier 1

Midspan Displacement (mm)

6 13 19 25 32 38 44
600
500 678 kN-m
_ 400 542 kN-m
& .
g Design Strength< Factored Load Effect for CTP3
E 300 407 kN-m
£ — —  __ __ |PredctdstenghREAsbut |
§ Maximum +Mu =219 kip-f
: : 271 kN-m
Design Strength ¢Mn (AASHTO) Partial Steel
: - . 135 kN-m
/ Designer’s actual assumption =0

0 0.25 0.5 0.75 1 1.25 15 1.75 2
Midspan Displacement (in)
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Experimental Results: Mosier 3

Oregon State
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Analysis

* Reserve strength of Ti girder substantially exceeds factored demands
* Failed anchorage provided similar response as intact

Midspan Displacement (mm)

0.0 6.4 12.7 19.0 254 318 38.1 44.4 50.8
600 - - - 813
Predicted strength w Ti Failed before¢ adding TiABs
700 ew before adding TiABs 78
€ 400 542 E
% = Reser\{e
X _ _ = Capacity
E 300 Design Strength-¢ln (AASHTOFT Alone 407 -E
@ / \ @
g Maximum +Mu2134ipft 207 KN-m g
= 200 M=
100 | 136
As-built noTiABs
0 0
0 0.25 0.5 0.75 1 1.25 15 1.75 2

Midspan Displacement (in)

* Design strength of Ti girder exceeds factored demands even with Oregon State
conservative assumptions UNIVERSITY




30% less expensive than CFRP Oregon State

UNIVERSITY




ASTM Specification - Approved Nov. 2018

Main Committee: Committee B10 — Reactive and Refractory Metals and Alloys
Sub-Committee B10.01 on Titanium

L]
INTERNATIONAL

QG_EIMJ) Designation: B1009 - 18
ull

Standard Specification for

Titanium Alloy Bars for Near Surface Mounts in Civil

Structures’

This standard is issued under the fixed designation B1009; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (g) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers titanium alloy bars with sur-
face deformations and 90-degree anchorage hooks for use as
near surface mounts for flexural and shear strengthening of
concrete beams. The product can be furnished with or without
anchorage hooks as specified by the purchaser. If supplied
without hooks, the hooks shall be bent on-site prior to
installation, as this method requires two 90-degree anchorage
hooks.

1 72 The valnec ¢tated in inch-nonnd nnite are tn he recarded

D7913/D7913M Test Method for Bond Strength of Fiber-
Reinforced Polymer Matrix Composite Bars to Concrete
by Pullout Testing

E8/E8M Test Methods for Tension Testing of Metallic Ma-
terials

E29 Practice for Using Significant Digits in Test Data to
Determine Conformance with Specifications

E539 Test Method for Analysis of Titanium Alloys by X-Ray
Fluorescence Spectrometry

E1409 Test Method for Determination of Oxygen and Nitro-

e e — —



ASTM B1009-18 Requirements:

 Tensile properties

 Chemical requirements
 Bond strength

* Cross-Sectional area calculation
 Bending requirements

ﬂ. ujg I IM’

INTERNATIONAL
Standards Worldwide




AASHTO Design Guide Approved COBS 2019

* “Guide for Design and Construction of Near-Surface Mounted
Titanium Alloy Bars for Strengthening Concrete Structures”

* AASHTO-LRFD Format
~ | | AASHI
 General Conditions | e

or STATE HIBHWAY- Anb

* Materials
¢ CO n St rU Ct i O n - | Guide for Design and Construction of

. . % Near-Surface Mounted
Installation Titanium Alloy Bars

for Strengthening Concrete Structures

* Design
* Flexure and Shear (MCFT)

on State

UNIVERSITY




Design Guide

* Conventional analysis methods
* Design TiABs at yield if conditions are met
* Includes environmental durability factor (epoxy)

e 3 Limit states for flexure and 1 for shear
e Strength

 Service (check bond stress at cutoffs and where retrofitted
strength above base capacity)

* Fatigue (not of TiAB but of reinforcing steel)
* Comprehensive design example (shear and flexure)

IR S



Conclusions

Titanium Alloy Bars (TiABs)

* Well-defined material properties

* High strength

* Ductility

* Environmental durability

* Ability to fabricate mechanical anchorages

* Cost effective (S200k project, S17k Ti, S19k Epoxy!!)
e Ten Bridge in OR...

These attributes make the Ti-6Al-4V alloy reinforcement a
promising material for economically strengthening bridges

and other structures. Oregon State
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Seismic Deficiencies of e
x 24 in. Square

pre-1970’s columns il
e Insufficient transverse reinforcement -
" #3a@ 12 in spacing Elevation ~ '
View C
: : I
e Common design details: L J 24 d, to
36 d,
= Lap-splice lengths of 24 d, to 36 d, H Ry,
= Large bar sizes (> #11; square and round) i}‘ t
=N N _'\\\7)775\\\‘?_'-"-_‘:1’
* Longitudinal rebar placed at column corners 6 x 6 ft square
= Grade 40 steel (275 MPa) i
-
» f_=3300 psi (22.7 MPa) Plan _rj“
Tl B




Common Approach for Retrofitting

Fiber reinforced (FRP) laminates (Confinement)
* High-strength
 Surface preparation

* Non-ductile

* Degradation concerns
* Not inspectable

Oregon State



Seismic Performance

Spiral @ C

Spiral @ D

LA
T

48

#5 Titanium bars

fy = 140 ksi

Specimen Detailing ﬁ‘) A(-_F)B C (in) (i[1)1)
C1-L Lap-splice L,=29d, - - -
Co-LRT [APSPlice+ 4 _o94  1e7L 15 3
Titanium
C3-LRs APSPHCe* ¢ _o94 1501, 15 25
Titanium
C4-RT PP - 1.67 L, 1.5 3
Titanium
24" i
- =1/2" clr
B 24 \
#3 @12 in. 34"
3 - SN
A #10 bar #3 Titanium spiral
fy = 60 MPa fy = 140 ksi —



Experimental Set-Up Axial load
200 kip

/Steel |—Beam oad Cell
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ol f (NS
il \Hydrculljic Actuoto”r_'\ R |
\ ‘\sActuator
Steel extension section 110 k|p
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Spherical nut anchor
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Strong Floor

Elevation View
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TiAB Spiral Reinforced Concrete Shell

e Continuous spiral

Debonded shell from column with plastic sheet

Flexible polycarbonate sheet formwork

Ratchet strap drawn tight to TiAB spiral (no cover) and holds form
See-through, so know completely filled

B
Qi "

egon State



51

Control Specimen: Observed Performance

Progression of lap-splice exposure and bond-slip
e Lap-splice failure -> rapid flexural strength degradation

e Severe spalling

* Non-ductile

gon State

UNIVERSITY
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Titinium Observed Performance

Retrofitted specimens: corner spalling progression

jon State

UNIVERSITY




Observed Performance
Retrofitted specimens with lap splices (similar performance):

* Ductile withdrawal of hooked anchorages
* Footing concrete spall cones

Rocking column behavior

" ape g it i X 57

gon State
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Fuse Seismic Forces Imparted on Footing

* Spread footing
* Timber pile

—]
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Experimental Tied Footing Details

Force column failure
But do not reflect in situ details or reactions

UNIVERSITY
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Typical Footing Details

Typical Spread Footing Typical Timber Pile Footing

2 2

9 -#4 Gr. 40 bars 6 -#4 Gr. 40 bars

J {
@ L 1 @ @ [ — — 1 @
t t t t

9 -#4 Gr. 40 bars 6 - #4 Gr. 40 bars
1 —
) i
L2 —@

6 - #4 Gr. 40 bars
9 -#4 Gr. 40 bars bothways N

b othwaysﬁ\

10 in. dia.

o Timber pile” L A1 e | A |
SECTION 1-1 ALONG E-W DIRECTION SECTION 1-1 ALONG E-W DIRECTION

R N A N I N A N

6 -#4 Gr. 40
9 - #4 Gr. 40 bars bars bothways =

b nthwaysN

i 1, a1, r regon State

SECTION 2-2 ALONG N-S DIRECTION SECTION 2-2 ALONG N-S DIRECTION

UNIVERSITY




Typical Footing Details

Typical Spread Footing Typical Timber Pile Footing

Final 2 specimens Oregon State

UNIVERSITY




Conclusions
Titanium's
* Well-defined material properties
* High strength
* Ductility
* Environmental durability and

* Ability to fabricate mechanical anchorages

make the Ti-6Al-4V alloy reinforcement a promising
material for economically strengthening bridges for

gravity loads and achieving high seismic performance of
poorly detailed bridge columns.

Oregtum State
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